3.230 \(\int \frac {(g x)^m (d^2-e^2 x^2)^{5/2}}{d+e x} \, dx\)

Optimal. Leaf size=163 \[ \frac {d^3 \sqrt {d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac {3}{2},\frac {m+1}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )}{g (m+1) \sqrt {1-\frac {e^2 x^2}{d^2}}}-\frac {d^2 e \sqrt {d^2-e^2 x^2} (g x)^{m+2} \, _2F_1\left (-\frac {3}{2},\frac {m+2}{2};\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (m+2) \sqrt {1-\frac {e^2 x^2}{d^2}}} \]

[Out]

d^3*(g*x)^(1+m)*hypergeom([-3/2, 1/2+1/2*m],[3/2+1/2*m],e^2*x^2/d^2)*(-e^2*x^2+d^2)^(1/2)/g/(1+m)/(1-e^2*x^2/d
^2)^(1/2)-d^2*e*(g*x)^(2+m)*hypergeom([-3/2, 1+1/2*m],[2+1/2*m],e^2*x^2/d^2)*(-e^2*x^2+d^2)^(1/2)/g^2/(2+m)/(1
-e^2*x^2/d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {892, 82, 126, 365, 364} \[ \frac {d^3 \sqrt {d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac {3}{2},\frac {m+1}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )}{g (m+1) \sqrt {1-\frac {e^2 x^2}{d^2}}}-\frac {d^2 e \sqrt {d^2-e^2 x^2} (g x)^{m+2} \, _2F_1\left (-\frac {3}{2},\frac {m+2}{2};\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (m+2) \sqrt {1-\frac {e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Int[((g*x)^m*(d^2 - e^2*x^2)^(5/2))/(d + e*x),x]

[Out]

(d^3*(g*x)^(1 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-3/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m
)*Sqrt[1 - (e^2*x^2)/d^2]) - (d^2*e*(g*x)^(2 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-3/2, (2 + m)/2, (4 +
m)/2, (e^2*x^2)/d^2])/(g^2*(2 + m)*Sqrt[1 - (e^2*x^2)/d^2])

Rule 82

Int[((f_.)*(x_))^(p_.)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Dist[a, Int[(a + b*
x)^n*(c + d*x)^n*(f*x)^p, x], x] + Dist[b/f, Int[(a + b*x)^n*(c + d*x)^n*(f*x)^(p + 1), x], x] /; FreeQ[{a, b,
 c, d, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n - 1, 0] &&  !RationalQ[p] &&  !IGtQ[m, 0] && NeQ[m +
n + p + 2, 0]

Rule 126

Int[((f_.)*(x_))^(p_.)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Dist[((a + b*x)^Fra
cPart[m]*(c + d*x)^FracPart[m])/(a*c + b*d*x^2)^FracPart[m], Int[(a*c + b*d*x^2)^m*(f*x)^p, x], x] /; FreeQ[{a
, b, c, d, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 892

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + c*x^
2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*(f + g*x)^n*(a/d + (
c*x)/e)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !Int
egerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(g x)^m \left (d^2-e^2 x^2\right )^{5/2}}{d+e x} \, dx &=\frac {\sqrt {d^2-e^2 x^2} \int (g x)^m (d-e x)^{5/2} (d+e x)^{3/2} \, dx}{\sqrt {d-e x} \sqrt {d+e x}}\\ &=\frac {\left (d \sqrt {d^2-e^2 x^2}\right ) \int (g x)^m (d-e x)^{3/2} (d+e x)^{3/2} \, dx}{\sqrt {d-e x} \sqrt {d+e x}}-\frac {\left (e \sqrt {d^2-e^2 x^2}\right ) \int (g x)^{1+m} (d-e x)^{3/2} (d+e x)^{3/2} \, dx}{g \sqrt {d-e x} \sqrt {d+e x}}\\ &=d \int (g x)^m \left (d^2-e^2 x^2\right )^{3/2} \, dx-\frac {e \int (g x)^{1+m} \left (d^2-e^2 x^2\right )^{3/2} \, dx}{g}\\ &=\frac {\left (d^3 \sqrt {d^2-e^2 x^2}\right ) \int (g x)^m \left (1-\frac {e^2 x^2}{d^2}\right )^{3/2} \, dx}{\sqrt {1-\frac {e^2 x^2}{d^2}}}-\frac {\left (d^2 e \sqrt {d^2-e^2 x^2}\right ) \int (g x)^{1+m} \left (1-\frac {e^2 x^2}{d^2}\right )^{3/2} \, dx}{g \sqrt {1-\frac {e^2 x^2}{d^2}}}\\ &=\frac {d^3 (g x)^{1+m} \sqrt {d^2-e^2 x^2} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )}{g (1+m) \sqrt {1-\frac {e^2 x^2}{d^2}}}-\frac {d^2 e (g x)^{2+m} \sqrt {d^2-e^2 x^2} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};\frac {4+m}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (2+m) \sqrt {1-\frac {e^2 x^2}{d^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 122, normalized size = 0.75 \[ \frac {d^2 x \sqrt {d^2-e^2 x^2} (g x)^m \left (d (m+2) \, _2F_1\left (-\frac {3}{2},\frac {m+1}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )-e (m+1) x \, _2F_1\left (-\frac {3}{2},\frac {m}{2}+1;\frac {m}{2}+2;\frac {e^2 x^2}{d^2}\right )\right )}{(m+1) (m+2) \sqrt {1-\frac {e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[((g*x)^m*(d^2 - e^2*x^2)^(5/2))/(d + e*x),x]

[Out]

(d^2*x*(g*x)^m*Sqrt[d^2 - e^2*x^2]*(-(e*(1 + m)*x*Hypergeometric2F1[-3/2, 1 + m/2, 2 + m/2, (e^2*x^2)/d^2]) +
d*(2 + m)*Hypergeometric2F1[-3/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2]))/((1 + m)*(2 + m)*Sqrt[1 - (e^2*x^2)/d
^2])

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (e^{3} x^{3} - d e^{2} x^{2} - d^{2} e x + d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}} \left (g x\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="fricas")

[Out]

integral((e^3*x^3 - d*e^2*x^2 - d^2*e*x + d^3)*sqrt(-e^2*x^2 + d^2)*(g*x)^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} \left (g x\right )^{m}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(g*x)^m/(e*x + d), x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[ \int \frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} \left (g x \right )^{m}}{e x +d}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x)

[Out]

int((g*x)^m*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} \left (g x\right )^{m}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(g*x)^m/(e*x + d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}\,{\left (g\,x\right )}^m}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d^2 - e^2*x^2)^(5/2)*(g*x)^m)/(d + e*x),x)

[Out]

int(((d^2 - e^2*x^2)^(5/2)*(g*x)^m)/(d + e*x), x)

________________________________________________________________________________________

sympy [C]  time = 25.46, size = 248, normalized size = 1.52 \[ \frac {d^{4} g^{m} x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} - \frac {d^{3} e g^{m} x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + 2\right )} - \frac {d^{2} e^{2} g^{m} x^{3} x^{m} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + \frac {3}{2} \\ \frac {m}{2} + \frac {5}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {5}{2}\right )} + \frac {d e^{3} g^{m} x^{4} x^{m} \Gamma \left (\frac {m}{2} + 2\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + 2 \\ \frac {m}{2} + 3 \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + 3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(-e**2*x**2+d**2)**(5/2)/(e*x+d),x)

[Out]

d**4*g**m*x*x**m*gamma(m/2 + 1/2)*hyper((-1/2, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*
gamma(m/2 + 3/2)) - d**3*e*g**m*x**2*x**m*gamma(m/2 + 1)*hyper((-1/2, m/2 + 1), (m/2 + 2,), e**2*x**2*exp_pola
r(2*I*pi)/d**2)/(2*gamma(m/2 + 2)) - d**2*e**2*g**m*x**3*x**m*gamma(m/2 + 3/2)*hyper((-1/2, m/2 + 3/2), (m/2 +
 5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 5/2)) + d*e**3*g**m*x**4*x**m*gamma(m/2 + 2)*hyper((-
1/2, m/2 + 2), (m/2 + 3,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 3))

________________________________________________________________________________________